# ================================================================== #
# block of calculations
# ================================================================== #
# resample log returns weekly starting monday
lrets_resampled = lrets_grp.resample('W-MON')
# ================================================================== #
# rolling mean returns
n = 52
roll_mean = pd.rolling_mean( lrets_resampled, window=n, min_periods=n ).dropna(axis=0,how='all')
# ================================================================== #
# rolling sigmas
roll_sigs = pd.rolling_std( lrets_resampled, window=n, min_periods=n ).dropna(axis=0,how='all') * math.sqrt(n)
# ================================================================== #
# rolling risk adjusted returns
roll_risk_rets = roll_mean/roll_sigs
# ================================================================== #
# calculate log returns of treasury rates
rate_rets = np.log( rates / rates.shift(1) ).dropna()
rate_rets_resampled = rate_rets.resample('W-MON')
# ================================================================== #
# cumulative log returns of resampled rates
lrates_cumsum = rate_rets_resampled.cumsum()
# ================================================================== #
# rolling mean returns of rates
lrates_roll_mean = pd.rolling_mean(rate_rets_resampled, n, n).dropna(axis=0, how='all')
# ================================================================== #
# join yield and stock ret df
# ~~~~ raw resampled log returns
mrg = lrets_resampled.join(rate_rets_resampled, how='outer')
# ~~~~ z-scored raw resampled log returns
zrets = (lrets_resampled - lrets_resampled.mean()) / lrets_resampled.std()
zrates = (rate_rets_resampled - rate_rets_resampled.mean()) / rate_rets_resampled.std()
zmrg = zrets.join(zrates, how='outer')
# ~~~~ rolling means log returns
roll = roll_mean
rates_roll = lrates_roll_mean
mrg_roll = roll.join(rates_roll, how='outer')
# ~~~~ z-scored rolling means
z_roll = (roll_mean - roll_mean.mean()) / roll_mean.std()
zrates_roll = (lrates_roll_mean - lrates_roll_mean.mean()) / lrates_roll_mean.std()
mrg_roll_z = z_roll.join(zrates_roll, how='outer')
# ================================================================== #
# study focus
# ~~~~ raw resampled log returns
focus = mrg[['Major Banks','Investment Bankers/Brokers/Service','Investment Managers','Commercial Banks','^TYX','^TNX','^FVX']]
# ~~~~ z-scored raw resampled log returns
focus_z = zmrg[['Major Banks','Investment Bankers/Brokers/Service','Investment Managers','Commercial Banks','^TYX','^TNX','^FVX']]
# ~~~~ z-scored rolling means
focus_roll = mrg_roll[['Major Banks','Investment Bankers/Brokers/Service','Investment Managers','Commercial Banks','^TYX','^TNX','^FVX']]
# ~~~~ z-scored rolling means
focus_roll_z = mrg_roll_z[['Major Banks','Investment Bankers/Brokers/Service','Investment Managers','Commercial Banks','^TYX','^TNX','^FVX']]
# ================================================================== #
# select time periods of rising rates
focus_rising = focus
rates_gt_zero_tyx = focus_rising[focus_rising['^TYX'] > 0]
rates_gt_zero_tnx = focus_rising[focus_rising['^TNX'] > 0]
rates_gt_zero_fvx = focus_rising[focus_rising['^FVX'] > 0]
cols_tyx = [col for col in rates_gt_zero_tyx.columns if col not in ['^TYX','^TNX','^FVX']]
cols_tnx = [col for col in rates_gt_zero_tnx.columns if col not in ['^TYX','^TNX','^FVX']]
cols_fvx = [col for col in rates_gt_zero_fvx.columns if col not in ['^TYX','^TNX','^FVX']]
rates_gt_zero_tyx_x = rates_gt_zero_tyx[cols_tyx]
rates_gt_zero_tnx_x = rates_gt_zero_tnx[cols_tnx]
rates_gt_zero_fvx_x = rates_gt_zero_fvx[cols_fvx]